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THE DRIFT OF A 24-HOUR EQUATORIAL 
SATELLITE DUE TO AN EARTH 

GRAVITY FIELD THROUGH 4th ORDER 

by 
C. A. Wagner 

Goddard Space Flight Center 

SUMMARY 

This report extends previous investigations of 24- hour 
near equatorial ear th  satellites by considering the motion 
of such satellites in an ear th  gravity field through the 4th 
order. The three coupled second order  linear differential 
equations of initial drift from a 24-hour equatorial circular 
reference orbit are presented. This linear system is 
analyzed for "stable regions" in the field within which drift 
motion is self limiting. A somewhat simplified form of the 
linear equations is integrated to give a general solution 
whichdefines the meandaily motion after injection to a high 
degree of accuracy. 
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THE DRIFT OF A 24-HOUR EQUATORIAL 
SATELLITE DUE TO AN EARTH 

GRAVITY FIELD THROUGH 4 th  ORDER 
(Manuscript received July 8, 1963) 

by 
C. A. Wagner 

Goddard Space Flight Center 

INTRODUCTION 

Much analytic work has been done recently on the motions of a near synchronous satellite of the 
earth with a triaxial (2nd order) gravity field (References 1 and 2).  The oscillatory movement of 
such a satellite about the minor axis of the earth's elliptical equator has been sufficiently well de- 
scribed. This investigation into higher order gravity effects on 24-hour satellites w a s  prompted by 
a recent refinement of knowledge about these higher order  anomalies (Reference 3) .  The perturba- 
tion forces arising from the higher order tesseral  harmonics of the earth's gravity field a r e  small, 
but they a r e  in resonance on a 24-hour satellite. The major conclusion of the investigation is that, 
while no absolutely stationary geographic points exist for 24-hour satellites in an earth field to 4th 
order,  the overall features of the regime of motion in the dominant triaxial field (see Reference 1 
and pages 20-21) still hold. 

DERIVATION OF THE INTEGRALS OF PERTURBATIONAL MOTION 
FOR A 24-HOUR EARTH SATELLITE 

The force field F of the earth on a mass point y at earth centered r, 4 ,  6 in inertial space (Fig- 
u re  1) can be written: 

where 

4 
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(see Appendixes A and B). The XY plane is the earth's equatorial plane; on,,, is the inertial longitude 
of the principal axis of symmetry of the earth's mass distribution accounted for  by the nm harmonic 
of the geopotential VE . 

The acceleration of in inertial space. r, +, B is 

Writing F = ma, implies the following three scalar equations in the r, 4, Bcomponents of force and 
acceleration: 

Z (North Pole) h 

Earth 

Y 

X (Vernal Equinox) 

Figure 1 -Coordinate system referencing the motion of 
a 24-hour earth satellite. 

Equatorial section of 
the Earth Ellipsoid 
( looking south ) 

'T? ( a t  time, t )  
nm axis of Earth 

symmetry at time, t 

at time, t 

 at time zero 

/ w 
Figure 2-Section of the earth ellipsoid's equator show- 
ing the relationship of the various longitude references. 

-- (rzBcosz+) = G, (r ,  4, B-Bn,, ,)  , (6) r cos+ dt  

where the G's are gravitational force components 
per unit mass  (Appendix B). 

Consider the XY equatorial plane of the 
earth, with the earth's equator reflecting the 
mass distribution due to the nm harmonic of the 
geopotential (Figure 2). h is the geographic 
longitude of F; A,, is the geographic longitude of 
the principal nm axis of earth symmetry. Thus, 
it is clear  from Figure 2 that X -A,,,,, = B - enm.  
The potential in Appendix B is thus consistent 
with that in Reference 4. 

The reference orbit for the synchronous 
satellite is a circle in the equatorial plane of 
radius r, , traversed at the earth's rotation rate. 
Therefore, we assume a perturbation solution 
to Equations 4, 5 and 6 of the following form: 
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9 = [Initial Inertial Longitude] + [(Earth Rate).(Time)] 

+ [Geographic Longitude Perturbation] 

= [ ( e E ) ,  + A , ] + [ h E t ]  + [.A] ; 

4 = A $ :  

r -  - r s  + A r  , (9) 

where ;IE is the time constant earth rotation rate,  A,, is a constant equal to the initial geographic 
longitude position of m, and A h i s  the change in geographic longitude with time. 
constant init ial  radius (the ”synchronous radius“) of m ,  to be determined later,  Ar the change in 
radius of m withtime, and ( B E ) ,  the initial inertial longitude of Greenwich. 
tion 7)  replaces B - Brim in the force field of Appendix B, by 

Brim 
longitude arguments a r e  

Small r s  is a time- 

The perturbation (Equa- 

Therefore, for the perturbation solutions, the force field 
( B E ) ,  t A, t eEt + A h  - enm. But 

= ( B E ) o  t eEt t h n m  , from Figure 2. 

Let 

define harmonic constants referred to the initial geographic longitude of m .  

7, 8 and 9 a r e  solutions to Equations 4, 5 and 6, i f  
Thus Equations 

___-  1 d 
( r s  +Ar) d t  (rs 

t n r )  2 (A & )  t (rs t Ar) .(eE +Ai))’ cos A @ s i n n  4 



Let w = e,, and by performing the indicated differentiations and substitutions, and ignoring all prod- 
ucts of perturbations and/or perturbation rates, Equations 11- 13 become 

(14) 
i, t ar,  + b h ,  + c h ,  tdcb, = e  

6, + fd, + gr, + h h ,  = i (15) 

where r ,  Or /rs  , A ,  = O h  , 4, = Ad are all dimensionless variables. The dots in Equations 14-16 
and what  follows re fer  to derivatives with respect to a dimensionless time T = tw . Thus 

The constants in Equations 14-16 are:  

- 3150J44($1 COS 4Y44} ; 

b = - 2 ;  

s i n 2 ~ ~ ~  t 2100J4, 

- 525J43(:)4 cos3y43}; 

4 



+ 5 2 5 ~ ~ ~ ( : ) ~  cos 4y4.> ; 

+ 735J4, (:)4 cos 3 ~ ~ ~ }  ; 

h = -“( w2r; 30J32 ( R 0 ) 3  f s i n 2 y 3 2 -  

+ 3 1 5 5 , ~  (2)4 s i n  3y43} ; 

i = {.? J 3 0  (;)3 - 15J32(:)3 cos 2y3, + qJ41(:)4 c o s y q 1  

- 1 0 5 J 4 3 t 2 ) 4  cos 3y43}; 



k = 2, 

- 1 5 J 4 z ( 2 ) 4  s in2y4’  +420J4, (R:r r ~ i n 4 y ~ ~  } 
Writing Equations 14-16 in operator notation (s l  = d/dT, s’ = d’/dT’, s s l ,  s o  = 1, etc.), we have 

( g )  r l  + ( h ) A l  + (sz + f)41 = i , (32) 

(ks + 2 )  r l  + (s’ t j )  A 1  t ( m )  = n . (33) 

6 



Solving Equations 31-33 by Cramer’s  rule, we obtain 

e bs + c d 

i h s Z + f  

n s z + j  m 

s Z + a  b s + c  d 
r l  = 

g h s 2 + f  

k s + 1  s z + j  m 

= {e[hm-s4 - j f - s 2 ( f + j ) ] - i [ m ( b s + c  ) 

- d ( s Z + j ) ]  + n(bs3+csZ+bfs+cf-h)}/{[s2+a][mh-s4 

- s z ( j  t f ) - j f ] - g [ m ( b s + c ) - d ( s ’ + j ) ]  + ( k s + l ) ( b s 3 + C S Z  

t b f s  + c f  -hd)}. 

Or  

(34) 

- s 6  r ,  + (A )  s 4  r ,  + (B) s3 r l  + ( C )  s z  r l  + (D) s 1  r ,  + (E) so  r ,  = ehm + e j f  - imc 

t i d j  + ncf - nhd, (35) 

This result follows from the evaluation of the determinants because s (a ,  b, c ,  

c . . . . are all constants. In summation, the three uncoupled linear drift equations of sixthorder are:  
* ) = 0, since a ,  b, 

[ -  s 6  + (A) s 4  + (B) s3 + (C) s z  + (D) s 1  + (E) s o ]  A, = A, , 

[ -  s 6  + (A )  s4 + (B) s3 + (C) s z  + (D) s1 + (E) s o ]  4, = A, . 

The constants are;  

A = - a + k b - j - f ,  (37) 
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C = mh - aj  - af  - j f  + gd + Zc t bfk , (39) 

D = - gmb + kcf  + Zbf - khd , (40) 

E = amh - a j f  - gmc + dgj + l c f  - lhd , (41) 

A, = ehm + e j f  - i m c  + i d j  + ncf - nhd , (42 1 

A, = aim - anf - gem + gnd + l e f  - l i d  , (43 1 

A, = ahn - a i j  - gcn + gej + l c i  - leh . (44 1 

Examination of Equations 31-33 shows that for zero initial conditions (r, = i, =+, = &  =A, =i, = 0 ,  

a t  T = 0 ) ;  r ,  (T = 0 )  = e, A, (T = 0)  = n and i, (T = 0 )  = i .  The necessary and sufficient conditions 
for  the drift to be zero for all time are ,  then, for the mass m to be placed with zero initial con- 
ditions into a n  orbit for which 

That this is so may be shown by successive differentiation of Equation 31-33 for the higher deriva- 
tives. They will  all be zero providing only that the initial perturbation, perturbation rates  and per- 
turbation accelerations a r e  zero. But Equations 45 a r e  three transcendental equations in the 
two unknowns A, and r s  (the initial longitude and radius of the satellite). Therefore, there will be, in 
general, no simultaneous solution except by coincidence of the constants of those equations. However, 
from what is known at present about the earth 's  gravitational field* (see Appendix C), the perturba- 
tion forces due to the latitude antisymmetry of the field (included in the i constant) a r e  small com- 
pared to those in the radial and longitudinal directions at near synchronous altitudes. The latitude 
perturbations, then, may be neglected in considering the conditions for a near zero solution to Equa- 
tions 31-33. A plot of these perturbation forces with A, at an r s  determined from e = 0 ,  is found in 
Appendix C . It is postulated then, and proved later, that essentially stable regions of the gravity field 
in geographic-geocentric coordinates exist in the neighborhood of one o r  more points on the equator 
for which 

*Kozai, Y., Private Communication, November 1963. 
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In the development which follows, the earth gravity field of Kozai is used together with an earth ro- 
tation rate from Reference 3. These earth constants are:* 

w = .7292115 x lo-, rad./sec. 

pE = 3.986032 x 10'' cm.,/sec? 

R, = 6.378165 X l o 8  cm. 

J,, = 1082.48 X lo-' 

J,, = -2.56 X 

J,, = -1.84 X lo-' 

J,, = 0. 

J,, = -1.2 X lo-' 

J,, = -1.9 X IO-' 

J,, = - .14 X IO-' 

J,, = - . l o  X IO-' 

J,, = - 5 2  X IO-' 

J,, = - .062 x 

J,, = -.035 X lo-'  

J,, = - .031 X 

A,, = -26.4 degrees 

A,, = 4.6 degrees 

A,,  = -16.8 degrees 

A, ,  = 42.6 degrees 

h,, = 237.5 degrees 

A,,  = 65.2 degrees 

A,, = 0.5 degrees 

A,, = 14.9 degrees 

(Reference 3) 

I 

*The constants are taken from Kozai, Y., Private Communication, November 1962, unless otherwise noted. 

I . ... 
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The two transcendental equations in A, and rs arising from Equation 46 are: 

. {-525J44(:)4  COS^^^^} - TJ4,,(;)4 + s inAo {-6J31(2!sinA3] 

t sin3Ao {60J33(;)3 s i n 3 A 3 1  + sin4Ao (_,SJ,,(;)~ sin4A4,> ; 

and 

0 = s i n  A, [- $ J31(2) C O S A ~ ~ ]  + s i n  2A, [6J2. C O S  2A2, - 15J42(:)2] 

sin2A42] + cos3Ao [-4SJ,,(?) + cos4Ao [420J44(;)2sin4A4j . (49) 

In general, for every finite non zero r s  , Equation 49 changes sign a minimum of two times and a max- 
imum of eight times over the equator. The earth constants a r e  such that for r s  > R, , the right hand 
side of Equation 48 is very close to 1 for all points on the equator. Essentially then, Equations 48 and 
49 decouple. Equation 48 may be solved separately for a near synchronous radius independent of 
longitude, leaving a small longitude dependent residual. With the near synchronous radius so de- 
termined, the zero's  of Equation 49 establish (to high accuracy) a minimum of two and a maximum 
of 8potentially drift freepoints on the equator. The longitude dependent residual of Equation 48 may 

10 



then be solved to establish (to high accuracy) the radius to each potentially drift f ree  point. The per- 
turbation constants of the earth 's  gravity field a r e  SO much l e s s  than 1 that the iteration need not be 
carried further than that outlined above (see Appendix D). The results of this iteration of Equation 
48 and 49 with the earth constants of Equation 47 are: The spherical earth "synchronous radius" is 

rs (Spherical) = 138333942.5 f t .  (26199.6103 statute miles); (50) 

The "oblate earth" (including Jz0 and J4, potential terms)  "synchronous radius" is 

r s  (Oblate) = 138335648.5 ft.  (26199.9334 statute miles). 

With the aforementioned oblate earth synchronous radius, Equation 49 becomes 

0 = .430 sin A, - 4.37 sin 2A, + .4175 sin 3A, - .151 sin 4A0 - .0345 cos A, 

(52) - 5 . 7 6  cos 2A, + .538 cos3Ao + .257 COS 4 A , .  

The zero's  of Equation 52, which a r e  the potentially drift f r ee  longitudes around the equator, a r e  at 

A, = 64.24 155.8", 242.9" and 331.3". (53) 

It is interesting to compare these potentially stable longitudes with those which would be present if 
all the tesseral  and sectorial harmonics except Jz2 a r e  ignored. In the simpler field (the so-called 
"triaxial" gravity field), the zero's of Equation 48 with the oblate earth synchronous radius of Equa- 
tion 51 a r e  at 

A, = 63.6", 153.64 243.6" and 333.6". (54) 

In no case (with a full earthpotentia1)do the "stable" longitudes differ by more than 2.3" f rom those 
which exist in the simpler "triaxial" field. 

The potentially drift f ree  radii to the longitudes of Equation 53 are: 

rs(A,  = 64.2") = 138335637.5 ft.  (26199.9313 statute miles) (55a) 

r , ( A o  = 155.8') = 138335660.2 f t .  (26199.9356 statute miles) (55b) 

.,(Ao = 242.9') = 138335635.2 f t .  (26199.9309 statute miles) (55c) 

r , ( A o  = 331.3") = 138335660.3 f t .  (26199.9356 S t a t U t e  miles). ( 5 5 4  

The uncoupled linearized drift Equations 36 may be simplified and integrated directly by ignoring all 
te rms  in the differential coefficients A, B, C7 D and E which a r e  much l e s s  than 1. The driving te rms  

11 



A,, A,, A, must retain at least one order of smallness less than 1 so that the resulting solution is 
sufficiently sensitive to drift acceleration. The initial radius may be chosen for convenience as the 
mean of those in Equation 55. But to insure the longest possible validity for the resulting solution, 
it is probably best to solve e = 0 for r s  at the A,, f rom which the perturbation is desired. In any case, 
r s  = 138335647.7 f 12.5 ft. for near zero solutions to Equation 36 with zero initial conditions. The 
simplified uncoupled drift equations then become: 

(s6  + 2s4 + s 2 )  r, = - A, 

( s 6  + 2s4 + s,) A,  = - A, 

It may be verified that the complete solution to Equation 56 is: 

A q  T Z  
Aq = Clq + C,,T + (C3q +C4,T) s i n T  + (CSq +C6,T) C O S T  -7 , (57) 

where 

Aq = r ,  when q = 1 , 

Aq = A, when q = 2 , 

In any dynamics problem utilizing the perturbation solutions (Equation 57), 18 conditions on the per- 
turbations must be specified. 

The coefficients Ci of the approximate perturbation solution (Equation 57) for the synchronous 
equatorial satellite have been solved in Appendix A of Reference 5 for the general case where any 
small  initial perturbations and perturbation rates  may be given. Ignoring terms of second and lower 
order smallness, the linearized drift  solution for the 24-hour equatorial satellite is approximately 

12 



The s:Aq a r e  initial dimensionless perturbations; the s t A q  a r e  initial dimensionless perturbation 
rates.  

Longitude Range 
(degrees ) 

62.4 < X o  155.8: 
155.8 ho < 242.9: 

331.3 < Xo 62.4: 
242.9 < ho 331.3 

I 

DRIFT OF A 24-HOUR EQUATORIAL SATELLITE WITH LOW INITIAL RATES 

- --62.4" 
Sign (n) Sign (-n) 

Axis of 
+ Earth's Equator - + 
+ 2.3" 

+ 0" (Greenwich ) - 331.3" 

*Frick and Garber, Private Communication, 1962. 
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Figure 3-Long term radial and longitudinal dri f t  follow; 
ing near perfect injection a t  near synchronous radii 
around the equator. 
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such a circulation about two dynamically "stable" regions of zero longitude and radial force 
perturbation, exists for the full earth potential as well. 

The latitude drift following a near perfect "synchronous" injection, predicted in (57c) is initially 
a daily harmonic oscillation of small  amplitude, but predominantly on one side of the equator or the 
other depending on the sign of i which is proportional to the latitude perturbing force at the equator. 
Since J,o (the so-called "pear shaped'' harmonic of the earth's field) dominates i and it is negative, 
the perturbing force is directed south and the initial daily oscillation is southerly with an amplitude 
of 2 i .  

The drift of a near synchronous earth satellite injected with zero drift ra tes  at -71.4" longitude 
from Greenwich (45" from the minor axis of the earth ellipsoid's equator, and thus having close to 
maximum longitude perturbations) as predicted by Equations 57a, 57b, 57c, is 

Ar = 259t -41.25 s i n  ( 2 ~ t ) f t , ( t , i n s i d e r e a l  days);  (574  

(574 A i =  3 4 . 2 ~  ( 1 - c o s 2 n t )  -505 x 1 0 - 6 t 2  deg rees , ( t ,  i n  s i d e r e a l d a y s ) ;  

(57f) A+= - 10.7 x lo-' ( 1  - cos 277t) degrees,  ( t ,  i n  s i d e r e a l  days). 

Numerical integration (Cowell step by step 
method) of the equations of motion have been 
carr ied out on an IBM 7090 computer and the 
comparison with the predictions of Equations 
57d, 57e, 57f is illustrated in Figures 4 and 5 
for the longitudinal and radial drifts to 30 days 
following injection. The full results indicate 
that the linear theory of Equation 57 will pre- 
dict the perturbations of a near synchronous, 
near equatorial satellite due to a "full" earth 
potential through 4th order, to within 2 percent 
in the mean daily longitude drift, and 1 percent 
in the mean daily radial  drift for up to 180 days 
following a near perfect injection. The numeri- 
cally computed latitude drift of the near syn- 
chronous satellite is of the order of 
degrees, maximum, over 180 sidereal days, 
which agrees with (57f) in order of magnitude. 
Numerically integrated drifts for the above ex- 
ample in a "triaxialf' ( Jz0 and J2* harmonics 
only) earth field show of about 10 per- 

both radius and longitude to 180 days following 

through 4th Orde 

I I I I I  
0 3 6 9 12 15 18 21 24 27 30 

TIME FROM INJECTION (sidereal days) 

Figure 4-Comparison of numerically integrated and 
predicted longitude drift of a near 24-hour Satellite in- 
jected at -71.4' (45" east of the earth ellipsoid's minor 
equatorial axis) at a radius of 138,335,650.2 feet, with 
zero init ial  perturbation rates. 

cent from the drift in a potentia' in 
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injection. This "error" was reduced to about 
5 percent with the inclusion of the J3 harmonic 
in the programmed potential function. Inclusion 
of the J3 ,  harmonic reduces the "error" to 
about 1 percent over 180 days. 

It should be noted that the linear theory 
presented in this report  does not predict the 
change in eccentricity with time of the spiralling 
orbit of the resonant near synchronous satel- 
lite. However, the results of the numerical 
integration on the above example show that the 
initial eccentricity of the spiral orbit is well 
predicted. The radius in the numerically in- 
tegrated orbit has a daily oscillation of about 
f (34 + 5 t )  feet, ( t ,  in days) for a period of 5 
days following injection; which is in excellent 
agreement with (74a) considering the inherent 
machine e r ro r  in the numerical integration 
and the simplifications in the theory. 

9000 

h Numerically Integrated Drift : 8000 - / 
v 

cn 2 7000 - 
a 
2 6000 - 
z 

5000 - 

$ 4000 - 

3000 - 

Id a 

0 

2 
8 2000 - 

With all 

With J20 and Jz2 only. in Geopotential/ 

w O  3 6 9 12 15 18 21 24 27 30 

TIME FROM INJECTION (sidereal days) 

Figure 5-Comparison of numerically integrated and 
predicted mean daily radial dri f t  of a near 24-hour 
satellite injected a t  -71.4" a t  a radius of 138,335,650.2 
feet, with zero init ial  perturbation rates. 

STABILITY OF MOTIONS OF THE 24-HOUR SATELLITE 
NEAR POINTS OF ZERO LONGITUDINAL AND 
RADIAL PERTURBATION FORCES 

If the longitudinal and radial perturbation forces a r e  zero, it may be verified that e = n = 0 (see 
Appendixes B and C) and the linearized drift Equations 31-33 become 

( s 2  + a ) r ,  + ( b s  +c )X,  + (d )q5 ,  = 0 : 

( g > r ,  + (h)h,  + ( s 2  + f )  q5, = i ; 

( k s + l ) r ,  t ( s 2  f j ) h ,  + (m)@, = 0 , J 
The characteristic equation of the system (Equations 58) is (evaluating the differential constants 
of Equation 36 for e = n = 0) 

q6( - 1) + q4( - a + kb - j - f )  + q3(kc t lb) t q2(mh - aj - af - j f t gd + I C  + bfk)  

+ q(- gmb t k c f  + lbf -khd) + amh + d g j  + Zcf - lhd = 0 . (59) 

15 



The particular solutions to Equation 58 will be constants: 

1 E .  
AI ’ 

r l  (part icular)  = - 

E 
(part icular)  = - 

A3 * 

To simplify the calculation of the roots of the characteristic Equation 59 without losing anything es- 
sential in the characteristics of the motion, we will  ignore the lower order  perturbation constants 
and/or products of perturbation constants in each coefficient of Equation 59. With this simplification 
and with the large constants evaluated, Equation 59 becomes 

It is noted that the characteristic values of the motion from Equation 61 are independent of the lati- 
tude perturbations of the earth’s gravity field. Consider q ,  , as solutions to Equation 61, where 
lq l ,  21 << 1. For these solutions, ignore orders  of q smaller than qz . Equation 61 in q , ,  then becomes; 

The solutions to Equation 62 are 

= - ( 2 - c )  t ( 2 - c ) ~  + 3j]” . 
q1.2 [ 

Since 1 1 - c 1 , 13 j 1 << 1 , the approximation to Equation 62 for  these roots is valid. 

There are also solutions to  Equation 61: Iq/ = ( -  1)”. Therefore, le t  

= + (-1)” + E 3 , 4  , q 3 . 4  

where I e 3 .  I << 1. With Equation 64 substituted into Equation 61, Equation 61 becomes 

16 



Since I e 3 ,  I << 1 , the expansion of Equation 65 ignoring te rms  in e 3  and higher, is 

6~[( -1) ' ] '  + 8~[( -1) ' ] '  + 6 ( Z - ~ ) t [ ( - l ) ' ] ~  t 2 ~ ( - 1 ) '  - 2 ( Z - c )  ( - 1 ) '  

+ 2~ ( 1  - c )  (- 1)' t 2 ( 1  - c )  (- 1)" + 1 5 ~ ~  - 12e2 t 6 ( 1  - c )  E' ( -  1)' 

+ E 2  = 0 .  

This last equation reduces to  

~ ~ [ 1 5 - 1 2 + 6 ( Z - c )  ( - l ) ' t l ]  + t [ 6 ( - 1 ) "  - 8 ( - 1 ) '  - ~ ( Z - C  ) + 2 ( - 1 ) '  

+ 2 ( 1 - c  ) (-1)HJ = 0 .  

Thus, the approximate roots to Equation 65 are 

- 2 ( z - c )  [- 3 + ( -  l)'] 
€ 4  = 4 

E 3  = 0 ,  

Similarly, letting 

= - ( -  1)' + E 5 , 6  . 
q 5 , 6  

The expansion of Equation 61, with the same order of approximation as for c 3 ,  4 ,  reduces to 

6 e [ - ( - l ) ' I 5  + 8 c [ - ( - l ) ' I 3  + ~ ( Z - C ) E [ - ( - ~ ) ' ] *  + 2 ~ [ - ( - 1 ) ' ]  + 2 ( 1 - c )  ( -1) '  

- 2 ~ ( l - c )  (-1)' - 2 ( Z - c )  ( -1) '  + 1 5 ~ ~  - 1 2 ~ '  - 6 ( 1 - c ) ~ ' ( - 1 ) '  + = 0 . 
The roots to the above equation are 

E 5  = 0 ,  

Thus Equations 66 and 68 substituted into Equations 64 and 67 determine the other four roots to 
Equation 6 1 as approximately 

1 3 
(69) = t ( - l ) ' [ l - ~ ( Z - C ) ]  + p ( Z - c )  . q4. 6 
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Stability in the Triaxial Geopotential Field 

In this case 1 = c = 0 at the points of zero longitudinal and radial perturbation forces. The 
four characteristic solutions are 

While it is true that there are two more independent complementary solutions to Equation 58 that 
may be found for the triaxial case, their constants will be found to be zero when a natural set of in- 
itial conditions are specified. For the triaxial case, g = h = d = i = m = 0 . Therefore Equation 58 
uncouples in the latitude variation and there are only four characteristic solutions to the set in the 
longitude and radial perturbations. It may be shown that (70a) and (70b) are just these four. The re- 
dundant q,, 

case. 
= f ( -  1)% are the two characteristic solutions to the latitude variation in the triaxial 

On or  Near the Major Axis in the Triaxial Field 

3j (Ao = 153.6', -26 .4 ' )  = -t 0.99 x 

The motion thus has a slowly divergent component. 

On or  Near the Minor Axis in the Triaxial Field 

3j (A, = 63.6', - 116.4") = - 0 . 9 9  x 

The motion consists of two non-damped self-limiting oscillations. One has a period in the neighbor- 
hood of one day (from q3,4). The other has a frequency of (.99) X = 0.995 X (dimen- 
sionless) = .995 x w (dimensions of time-' ). This long period oscillation has a period in the 
neighborhood of 

H 

274 rad. /cyc le)  
= 1005 days 2.76 years . 

.995 x x 2v(rad./day) 

Stability in the Geopotential Field Through 4 th  Order 

For motion in the vicinity of the 4 points of zero longitudinal and radial perturbation forces: 

1. There will be 4 characteristic solutions giving damped oscillations with periods near one 
day [q3.4.5.6 from Equation 691 
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I 

2. There will be 2 characteristic solutions giving either a weak-negatively damped oscil- 
lation with a period near 1000 days, or two exponentials, one of which is slowly divergent 
in character. [ q , ,  from Equation 631 

For Motion in the Vicinity of the Zero Perturbations at ho = 64.2" 

i - = - 0.36 10-9 , 3j = - 1.026 x 

Perfect injection in the vicinity of this quasi-stable point is thus followed by two self- 
limiting oscillations with periods in the vicinity of one day which are weak-positively 

damped (q3,  4 ,  5 ,  6) . 
l/(l.026)H x 

There is also a self-limiting oscillation with a long period of 
= 987 Days = 2.71 Years, which is weak-negatively damped (ql, 2)  . 

For Motion in the Vicinity of the Zero Perturbations at io = 155.8" 

3j is controlled by the J Z Z  term,  is greater than zero, and +(3j)" is of the order of 

tions will be a slowly divergent exponential. 
1 1  - cI is of the order  of lo-' (as before), so that one of the characteristic solu- 

For Motion in the Vicinity of the Zero Perturbations at ho = 242.9' (-117.1 ") 

I - = t 5.3 10-9 , 3j = - 1.123 x 

Perfect injection in the vicinity of this quasi-stable point is thus followed by two self- 
limiting coupled oscillations with periods in the vicinity of one day which a r e  weak- 
negatively damped (q3, 4 ,  5 ,  6) . There is also a coupled self-limiting oscillation with a 
long period near 1/(1.123)% x 10 - 3  = 944 days = 2.58 year, which is weak-positively 
damped (9,. 2 )  . 

For Motion in the Vicinity of the Zero Perturbations at io = 331.3' (-28.7") 

3j, controlled by the Jz2 term, is greater than zero. *(3j)' 
1 1  - C I  is of the order  of lo-' as before. Therefore, the resultant motion is slowly di- 

vergent in character as one of the q,  , solutions will be positive of the order of + 

is of the order  of 

In conclusion, for the geopotential gravity field through 4th order, two regions on the equator 
have been found within which small initial perturbations in geographic longitude, latitude, and radius 
are self limiting in the sense that the resulting motion of an earth satellite in these regions is es- 
sentially harmonic in character with very weak damping. These regions are in the neighborhood of 
64.2' East of Greenwich and 26,199.9314 statute miles and 117.1" West of Greenwich and 26,199.9309 
statute miles from the center of mass  of the earth. They are both within 2-1/2 degrees of the minor 
axis of the earth ellipsoid's equator. The damping is of the order  of loA9 w t  , or of the order of 
lo-' t (days). Thus, initial amplitudes of the damped harmonic perturbations in these two regions 
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suffer a twofold change in magnitude in the order of t = In (2)/10- '  = 6.93 x l o 7  days = 1.9 x lo5 
years. These regions then, can be considered to be essentially stable. 

While the regions around 64.2" and 242.9" on the equator have an inherent dynamic stability in 
the sense shown above, the regions around the zero perturbation points at 155.8" and 331.3' are only 
very weakly dynamically unstable. At the n = e = Opoint where A. = 331.3' and rs = 138,335,660.3 
f t . ,  by assuming zero initial perturbations and rates, the resultant motion from a complete evaluation 
of the Ciq coefficients of Equation 57 in Appendix A of Reference 5, is 

r ,  - 1.63 x t ( - 1 . 7 6  x10-16T) t ( t 2 . 6 4 ~  1 0 - 1 6 - . 8 1 5 x  10-16T) s i n T  

t ( l . 6 3 x  1 0 - 1 6 - . 8 8 ~ 1 0 - 1 6 T )  COST - 21.3  x 10-24T2 , 

A, 5 - 6.15 x t ( 3 . 2 6 ~  10-I6T) t ( - 4 . 8 9  ~ 1 0 - 1 6 t 1 . 7 6  x10-I6T) s i n T  

+ ( +  6.15 x + 1.63 x10-I6T) C O S T  t 13.2  x l O - I 7 T 2  , (7 1b) 

(7 IC) 4, - 6 . 4  x t ( - 2 3 . 7  xlO-I4T) s i n T  + ( 6 . 4 ~  COST) + 24.5 x 10-16T2 

Equation 71a predicts a change in injection radius of only -.0003 feet in 5 years.  Equation 71b pre- 
dicts a change in injection geographic longitude of only +1.00 x degrees in 5 years. Equation 
71c predicts a change in injection latitude of only +1.85 x lo- '  degrees in 5 years. These a r e  all 
mean daily drifts. The amplitudes of the daily oscillations are even smaller quantities. The con- 
clusion is that station keeping requirements for near synchronous satellites placed with low initial 
rates near the major axis of the earth ellipsoid's equator, will be virtually unaffected by the non- 
central character of the earth 's  gravitational field. 

CONCLUSIONS 

The major conclusions of this paper may be summarized as follows: 

There are four longitudes, located within 2-1/2 degrees of the axes fixed by the earth's elliptical 
equator, into which a 24 hour satellite may be placed and maintained with negligible drift for extended 
periods of time. 

At intermediate longitudes (about 45 degrees f rom these "stable points") such a satellite will, even 
if injected "perfectly", experience a minimum of about 4 degrees of drift in 3 months following 
injection. 

Maximum drift of a perfectly injected 24-hour satellite in an earth gravity field to 4th order differs by 
about 10 percent from the drift experienced in a triaxial field. 
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Except in the immediate vicinity of the "stable points", the initial mean daily drift in radius following 
a perfect injection into a 24-hour orbit is proportional to time, and the initial mean daily drift in 
geographic longitude is essentially proportional to the square of time. 

The maximum longitude perturbational force on a 24-hour satellite in an Earth potential field to 4th 
order is approximately 12 percent greater than the maximum perturbation experienced in a triaxial 
field. 
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Appendix A 

List of Symbols 

a, b, c, d ,  e, f ,  g ,  h, i ,  j ,  k, 1 ,  m, n 

d 

F 
+ 

Perturbation constants of the uncoupled perturbation equa- 
tions of motion of the near synchronous satellite of the 
earth 

Perturbation constants of the coupled linearized perturba- 
tion equations of motion with respect to the synchronous 
circular orbit of radius r 

The total differential operator 

The ear th 's  gravity field 

The acceleration of earth gravity at the near synchronous 
radius rs. g ,  32.15(Ro/rS), % 32.15 X .02288 = .7355 
ft/sec 

In addition to  a perturbation constant, used as an  index to 
the coefficients of the drift Equations 57 

A point mass  

When used in the earth potential function; indicates the 
harmonic of order  n and power m 

An index for the coefficients of the drift Equations 57. 
Also, a characteristic solution of the uncoupled motion 
Equations 36 

The mean equatorial radius of the earth ellipsoid 

Spherical coordinates of the near synchronous satellite; 
geocentric radius; geographic longitude with respect to 
the greenwich meridian, and geocentric latitude from 
the earth's equator 

Dimensionless perturbation coordinates 

Ar 
r s  

r l  = - , A, = M (radians), = f!@ (radians) 
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r r  

S 

T 

t 

Perturbation coordinates in radius, geographic longitude 
and latitude from a reference equatorial orbit which is 
circular, having the near synchronous radius r s  and a 
period of exactly one sidereal day. These coordinates 
measure the drift of a near synchronous earth satellite 
from a point in space at a fixed r s  from the c.m. of 
the earth, moving along the equator at the earth's rotation 
rate  so as to maintain a fixed geographical longitude at 
all times 

Unit Vectors for the spherical coordinate system: r , e ,  4 

Spherical coordinates of geocentric radius, inertial longi- 
tude from the vernal equinox, and geocentric latitude from 
the earth 's  equator, locating the near synchronous satel- 
lite m in inertial space 

A nominal or calculated orbit radius at injection for a 
near synchronous earth satellite 

A differential operator: 

and, s," ( ) = ( ) at time T = 0, etc. 

Dimensionless time variable: T = wt, where w = the 
earth's sidereal rotation rate, and t is real  time 

Real time, from a zero at the point of injection of the sat- 
ellite into it's near synchronous orbit 

Differentiation with respect to real time t , prior to Equa- 
tion 14, and differentiation with respect to dimensionless 
time T in and after Equation 14 

The earth 's  gravity potential field 

Constants of the earth 's  gravity potential: 

A small  parameter 

The right ascension of Greenwich (GHA) at t = 0 

The earth 's  "constant" sidereal rotation rate 

The initial geographic longitude of the near synchronous 
satellite (i.e. the geographic longitude at injection) 

The earth's gaussian gravitational constant 
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Appendix B 

The Earth Gravity Potential and Gravitational Force Field Used 

The Gravity Potential used is the exterior potential derived in Reference 4 for geocentric spher- 
ical coordinates referenced to the earth 's  spin axis and it's center of mass (see Figure 1). The Har-  
monic series is truncated after J,, . 

The inertial gravity constants Brim are related to the usual geographical gravity constants by; 

enm = (BE) +  BE^ ' A n m  

so that 

(see Figure 2). The longitudes and minimax deviations from an average earth sphere for each har- 
monic are taken from the potential of Kozai*. The J,, and An, of this potential are presented in 
Equations 47. The earth 's  gravity potential may be illustrated as follows: 

cos  4 (15 sin' 4-  3) cos (0 - e 3 J  J31 R: 
( 5 s i n 3 4 - 3 s i n b )  -~ 

J30 '2 
-~ 

2 r 3  2r3 

*Wagner, C. A., "The Gravitational Potential of a Triaxial Earth," Goddard Space Flight Center Document Number X-623-62-206, 1962. 
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0" 

Ro3 Ro3 - ISJ,, 7 cos24  s i n 4  c o s 2 ( e - e 3 2 )  - ~ s J , ,  - c o s J + ~ ~ ~ 3 ( e - e 3 3 )  
r 3  

0 9" 

0" 

- 40.9" 

[140 s in3  4 - 60 s in4cos  + cos (0 - 041) 
J 4 1  R: 

-~ 5 4 0  R,' ( 3 5 s i n 4 4 - 3 0 s i n 2 4 + 3 )  - 7 
8 r 4  

-22 2" 
- 10' 

0" 

[840s in4]  C O S ~ ~ C O S  3 ( 0 - 8 , , )  
J 4 3  R," 

[420 sin' 4 - 601 cos2 4 COS 2 (0 - 0 4 2 )  - - 
5 4 2  R J  - -  

8 r 4  8 r 4  

0" 
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where 

2 

Gr = ’”” r’ {-lf (+) [* J z o ( 3 s i n ’ @ - 1 )  + 9 J 2 2 c o s 2 &  c 0 s 2 ( 8 - 8 ~ ~ )  

f I(+) J,, ( 5 s i n Z @ - 3 ) ( s i n @ ) t 6 ( ~ )  J,, ( 5 s i n z @ - 1 )  C O S @ C O S ( ~ - ~ ~ ~ )  

+ 60 (+) J,, cos’ @ s i n  @ cos 2 (8 - d , , )  f 6 0 ( 2 )  J,, cos3 q5 cos 3 (3  - 8,,) 

+ (+)’J4,, ( 3 5 s i n 4 @ - 3 0 s i n Z + + 3 )  

75 
f T (2)’ J4’ ( 7 ~ i n ~ 4 - 1 )  c o s 2 q 5 c o s 2 ( 8 - 8 4 z )  

r cos q5 F, = mGe - 

where 

f 30(!)) J 3 2  cos q5 s i n 4  s i n  2 (8 - 8,’) f 45(%) J,, cos’ @ s i n  3(8 - e,,) 

t (2)’ J 4 1  ( 7 ~ i n ~ & - 3 ) s i n q 5 s i n ( 8 - 8 ~ , )  + 1 5 ( ~ ) ’ ( 7 s i n 2 @ - 1 )  

. 5,’ cos @ s i n  2 (8  - 84z) + 315 J,, cos’ q5 s i n  6 s i n  3 (8 - 04,) 
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where, 

Gd - - '"E r 2  (>) { - 3J,, s i n  @cos  @ + 6J, cos @ s i n  + cos 2 (0 - 8, ,) 

J 3 3 c o s 2 q 5 s i n + c o s 3 ( 8 - B 3 3 )  J,, ( 7 ~ i n ~ 4 - 3 )  

5 . s i n @ c o s +  f 2 (:)' J 4 1  (28 sin4+- 27 s i n 2 @  f 3 ) c o s ( B  - 

+ 30(?)' J,, ( 7  s i n 2  4 -  4)  cos 4 s i n 4 c o s  2 ( 8 -  e,,) 

The radial perturbation of the gravitational field referred to in this report is the residual of the 
sum of the gravitational and centrifugal forces on m at the moment of injection at the radius r 5  . Since 
m is injected at an angular rate w for conditions where the initial perturbation rates  with respect to 
the reference synchronous orbit are zero, the centrifugal force on m at the moment of this injection 
at r s  is 4 ;(w' r s  ,,I) . Thus, the radial perturbation force, as defined above, at the moment of injection 
is: radial perturbation force = ?w2 r s  + ? G r s  = ?w2 r s  e .  Thus, the condition for the radial perturba- 
tion force (for a "perfect" injection, at injection) to be zero is:  e = 0. 
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Appendix C 

Magnitudes of the Longitude and Latitude Perturbation Forces 
per Unit Mass on a Near Synchronous Equatorial 

Satellite due to Gravity 

It may be verified from Appendix B, that: 

1. The longitude perturbation force per unit mass on the near synchronous satellite is given 
by 

2. The latitude perturbation force per unit mass on the near synchronous satellite is given 
by 

where gs is the radial acceleration of gravity in a l / r z  earth field a t  the synchronous radius: 

It is noted that at the synchronous radius 

/-LE 
- 1 .  
wz r," 

In Figure C1, the perturbation forces per unit mass a r e  plotted for two earth gravity fields. One is 
for a field through 4th order due to Kozai*, and the other is for a simpler triaxial field which includes 
only the second order  harmonic potential constants from the same source. It is seen that, while the 
triaxial components clearly dominate the longitude perturbation force function, the maximum force in 
the "full" field is 12 percent greater than the maximum force in the triaxial (Table Cl). The latitude 
perturbation in the triaxial field is, of course, zero. It is noted that the extreme magnitudes of the 
latitude perturbation function around the equator are about one order of magnitude less  than the 

*Kozai, Y., Private Communication, November 1962. 
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Figure C1 -The longitude and latitude perturbation forces on a near Equatorial 24-hour satellite 

GEOGRAPHIC LONGITUDE OF NEAR EQUATORIAL 24 - HOUR SATELLITE 

around the equator, due to the geopotential of Kozai. 

Table C1 

Comparison of Maximum Longitudinal Perturbation Forces 
at  Near Synchronous Altitudes Between the Triaxial and 

Full 4th Order Gravity Fields of Kozai. 

Minimax 
(units o f g S )  

-1.65 10-7 
-1.51 10-7 

+i.65 10-7 
+i.mX 10-7 

~ 1 . 6 5  10-7 
-1.85 lor7 

+i.65 10-7 
+ i s x  10-7 

- ... 

- .  

i o  
(degrees) 

- 

18.6 
21.7 

108.6 
109.7 

198.9 
200.0 

288.9 
282.3 

Percent difference 
of minimax G, 

between full and 
triaxial f ie ld 
(fu I I -triax/ 
triax) x 100 

+8.5 

+7.9 

-12.0 

-7.3 

extremes of the longitude perturbation func- 
tion. This fact gives justification to the as- 
sumption that the regions of stability for the 
near synchronous satellite may be con- 
sidered to be fixed by the longitude perturba- 
tion alone (i.e., by the zeros of n). It is also 
interesting that the minimum of the latitude 
perturbation in the full field at synchronous 
radius occurs close to the dynamically un- 
stable region near the earth equator's 
major axis while the maximum latitude per- 
turbation occurs near the dynamically stable 
region close to the minor axis. This coinci- 
dence tends to minimize the drift in the 
neighborhood of the major axis. 



Appendix D 

Procedure for Determining the Injection Radius and Longitude into a 
Near Synchronous Orbit with Minimal Initibl Perturbation Accelerations 

The two conditions for a minimal drift, near synchronous earth orbit, are assumed to  be 

These two conditions give a set of four injection radii and longitudes for minimum drift in a near 
synchronous equatorial earth orbit, with the potential of Kozai.* It can be assumed that injection at 
the earth rate into an inclined orbit whose nodes are near these geographic longitudes at near syn- 
chronous radii, will give orbits with similarly small nodal drift if  the inclination is not excessive. 

Let; 

r s  = r o  + . 

where r s  (< r o  is assumed and where r o  is the solution to: 

r o  may be thought of as the synchronous radius for the "oblate" earth. With Equations D3 and D4 into 
Equations D1 and D2, by ignoring all powers of Ars / ro  greater than one and all terms in J n m A r s / r o  ; 
the synchronous conditions become 

A r s  
- = { (K31) 'Os '0 + (K31) 2 s i n A o  + [(K22) 1 + (K42) 11 cos 2Ao + [(K22) 2 

'Kozai, Y., Private Communication, November 1962. 
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and 

( K J 3 )  = 4 5 J 3 3 ( 3  cos 3’33 7 

where 
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To solve Equation D4 for the oblate earth synchronous radius r o ,  let  

where r o  is the "spherical earth" synchronous radius satisfying the expression 

w 2  
= 1 .  - 

P E  

If A r o  << r o l  is assumed, then with Equations D9 and D8 into Equation D4, by ignoring the Jn,Aro/rol 
as of second order, the oblate synchronous radius is determined from 

The procedure to determine the elements of the "stable" synchronous orbit is: 

1. Solve for the spherical synchronous radius r o ,  from Equation D9. 

2. Solve for the oblate synchronous radius ro from the results of the solution for A r o  from Equa- 
tion'D10 into Equation D8. 

3 .  Solve for the constants K in Equation D7 

4 .  Solve for the "stable" synchronous injection or nodal longitudes A. from Equation D6. 

5. Solve for the "stable" synchronous radii r s  corresponding to these longitudes from the re- 
sults of the solution for .A r s  from Equation D5 in Equation D3. 

For the earth potential used, the magnitude assumptions in Equations D1 and D2 a r e  valid and the 
aforementioned uncoupled procedure establishes the "stable" synchronous elements to high accuracy. 
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